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ABSTRACT 

The  classification  and  construction of open-channel projection  operators for a given 
rearrangement  collision a r e  developed from  the unifying viewpoint of their  projective 
spaces  in  the  total  Hilbert  space of the  system.  The  representative  case of the pickup or  
stripping  process is treated.  The open-channel projection  operators are constructed 
from the channel-subspace  projectors with the help of generalized channel transformation 
functions.  Various  projection  operators that can be obtained in  closed  form are identi- 
fied.  The  use of the  projection  operators  to obtain  coupled equations  describing  the 
reaction is discussed, including their  application  to  generalized  potential  models. 
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COUPLED-CHANNELS  METHOD FOR 

REARRANGEMENT COLLISIONS 

by Howard C. Vo lk in  

Lewis  Research  Center 

SUMMARY 

A s  shown  by Feshbach,  coupled-channel  equations that describe a reaction  can  be 
obtained by means of an open-channel  projection  operator.  For a given  rearrangement 
collision,  the  classification  and  construction of such  operators  are  developed  herein  from 
the unifying  viewpoint of their  projective  spaces, which are  subspaces of the  total  Hilbert 
space of the  system.  The open-channel  projection  operators are not unique,  but the 
practical  limitations on their  choice  are  made clear when their  construction is viewed in 
te rms  of the  fundamental  channel  subspaces that arise naturally  in  the  problem.  The 
projectors  for  the  channel  subspaces  are  the  basic  ones  from which the open-channel 
projectors  are  constructed.  Generalized  channel  transformation  functions supply all the 
information  needed  for  this  purpose.  The  representative  case of the pickup or  stripping 
process is treated.  The  various  possible  projection  operators that can  be obtained in 
closed  form a r e  identified for  the two-channel case;  these  include  those  given by Feshbach 
and by Chen  and  Mittleman, as well as new ones  suggested by the  methods  presented 
herein. In all cases,  the  extension  to  the  multichannel  case is shown to follow easily. 
The  use of projection  operators  to  obtain  the  coupled  equations is discussed, including 
their  application  to  generalized  potential  models.  The  appropriate  boundary  conditions 
a re   a l so  given in  each  case. 

INTRODUCTION 

Rearrangement  collisions  have  received  considerable  study  in  the last few  years. 
Within the  framework of his general  reaction  theory,  Feshbach (ref. 1) has shown how 
any  reaction  can be described  exactly by a system of Schr'ddinger-type  equations.  The 
equations  couple  together  various  functions,  each of which yields  the  asymptotic  behavior 
of the wave  function  in its associated  channel (or group of channels). The set of coupled 



equations is obtained  from  an  open-channel  projection  operator P, in   t e rms  of which 
Feshbach's  unified  reaction  theory is formulated.  The  projection  operator P that 
selects  the open  channels is not  unique. When this  method is applied  to  reactions  involving 
simple  incident  and  target  particles (e. g. , electrons  (positrons) on light  atoms) o r  to 
more  complicated  target  systems  described by generalized  potential  models, it leads to 
a system of integrodifferential  equations  whose  accurate  numerical  solution is within the 
capacity of a large,  high-speed  computer. 

For inelastic scattering, the  coupled-channels  method has proved  to  be  useful,  and 
is developed  naturally  from  the  unique  expansion of the  scattering state in  the  set of 
orthogonal states of the  target  system. By the  simple  projecting  out of the open-channel 
components of the  expansion, a system of coupled  equations for  these  components is 
obtained. In rearrangement  collisions,  however,  the f ina l  noninteracting states in  the 
rearrangement  channels a r e  not orthogonal  to  those  in  the  direct  channels,  and  there is 
more  arbitrariness  in  the  choice of a projection  operator. In a given  problem,  any  suit- 
able  projection  operator  will  yield a set of coupled  equations that is formally  exact. A 
projector  whose  coupled  equations  have a form convenient for  applied  computations is 
desired. Such projectors  exist  and  can  be  expressed  in a closed  form.  They  offer a 
practical way of treating  rearrangement  collisions  that is free of the  approximations  com- 
monly  used  heretofore  in  such  problems. 

Among the  explicit  projectors  given by Feshbach (ref. 1) to  illustrate  various  facets 
of his  theory is one  applicable  to  the case of pickup or  stripping  reactions.  The  assoc- 
iated  coupled  equations are also  discussed.  Mittleman (ref. 2)  has given  another  projec- 
tion  operator  for  this  reaction,  one  designed  to  yield coupled  equations that are easier to 
apply  than  those of Feshbach.  Discussions  relevent  to  Mittleman's  projector are pre- 
sented  in  papers by Coz (ref. 3) and Hahn (ref. 4). Mittleman's first result was some- 
what disappointing,  however,  inasmuch as an  auxiliary  integral equation  problem  must 
be  solved  to  obtain  the  explicit  expression  for his projector.  Recently,  Chen  and 
Mittleman (refs. 5 and 6) have shown how to  circumvent  the  difficulties  in  constructing 
projectors of this type. 

Herein,  the  treatment of projection  operators  for  rearrangement  collisions is formu- 
lated  rather  differently  from  any  given  previously.  Basically,  the  problem is viewed in 
te rms  of the  subspaces (in the  total  Hilbert  space of the  system)  that  arise  naturally  from 
the  various sets of internal states occupied by the  channel  fragments.  These  channel 
subspaces  provide  the  fundamental  projectors. For every pair of open channels,  where 
the  fragments of one  channel  involve a rearrangement of the  others  fragments, a general 
transformation  function is defined.  This  transformation  function is the  scalar  product 
between two state vectors of the  total  system.  The  function  contains not only the  overlap 
integral of the  fragments'  internal states, but also  the  required  kinematic connection 
between  the  coordinates  describing  the  relative  motion of the  fragments  in  the  different 
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types of channels. The  transformation  functions contain all the  information  needed  to 
construct  the  open-channel  projection  operators. 

The  description  in  terms of the channel subspaces,  besides  furnishing a basis  for  the 
construction of projection  operators,  reveals  the  relations between  the  various  projectors 
that  have  already  been  proposed,  suggests new ones,  and  shows  the  limitations on their 
possible  types. In a previous  work (ref. 7), a general  class of open-channel  projection 
operators  for  any given reaction  was  described.  This  class, which may well include 
most of the  useful  ones  for  computational  applications,  consists of every  projector whose 
projective  space  contains,  in its entirety,  the channel subspace of every open channel. 
Projection  operators of the  type  given by Mittleman  and by Feshbach  can  be  characterized 
as having certain  minimal  and  maximal  projective  spaces,  respectively,  in  the class. 

In the  succeeding  sections of this  report,  the  general  formalism is explained, and 
certain  transformation  functions are discussed. The  methods are illustrated by a simple 
example (the  two-channel projector first given by Mittleman),  various  two-channel  pro- 
jectors that can be obtained  in  closed  form are constructed,  and  the  generalizations  to  the 
multichannel case are shown to follow easily. Finally,  the  asymptotic  properties  that 
provide  the  boundary  conditions for  the coupled  equations are given,  followed by brief 
discussions of the  equations themselves. 

BASIC THEORY AND  FORMALISM 

Channe l  Subspaces 

The  various channel projection  operators  that  occur  in a given rearrangement  col- 
lision are developed from  the unifying viewpoint of their  projective  subspaces  in  the  full 
Hilbert  space of the  problem.  The pickup (or  stripping)  reaction  serves as the  typical 
rearrangement  process in  the  considerations.  For  simplicity, it is assumed that only 
two types of channels a r e  open. In addition, recoil  effects  and  the  effects of identity a re  
neglected.  Thus, the  target is taken  to  be  infinitely  massive  and all particles are treated 
as distinguishable.  The notation used  herein  (see  the  appendix) is based on that of refer-  
ence 7, which may be consulted for  further  details. Although the notation appears  some- 
what cumbersome, it has  the  advantage of exhibiting  explicitly the  variables  that are 
employed at any given  point and  generalizes  directly to more  types of open channels or  to 
other  kinds of reactions. 

The  symbols Gg-l), Sg, and 9, respectively, are for  the heavy core nucleus,  the 
nucleus  consisting of particle  p bound to  the  core,  and  the bound system of particles 
n  and p. With position vectors  measured  relative  to  the  fixed  center of (d-1), let Fo 
and r l  specify  the  positions of n  and  p,  respectively.  The set of variables  for  the 
particles  that  constitute  the  core  nucleus are represented  simply as = (F2, . . . , rA). 

-L 

-L 

3 



The  center of mass  of 9 is at R = (1/2)(F0 + r' ) when the  masses of n  and  p are 
equal. The internal  motion is a function of r = ro - rl. Channel a m  consists of par- 
ticle n  and  nucleus 58, where d is in  the mth excited state with  wave function 
@m(rl, 5 ). Channel pn consists of the  fragments 9 and "1) in  the states of internal 
motion  given by the wave  functions xi(? ) and +. ( r), respectively.  The  index  n  spec- 
ifies  the  pair (i, j )  and is ordered  toward  increasing  values of the total internal  energy 
of the  fragments.  The  notation (x*)n is usually  written for x.*.. 

Consider now the  scattering state f for  the pickup  reaction.  Large  separations of 
the  particles  in  the a channels  correspond  to  large  values of ro, while ri 5 RA, i = 1, 
2, . . . ,d; correspondingly,  in  the f? channels, R becomes  large,  while r 5 R-,,, 
ri RA-1, i = 2, . . . ,sf. Here, RA is some  effective  radius of the  nucleus 94, and so 
on. If the  energy is such that there are Mo + 1 open a channels  and + 1 open f? 
channels,  then  the  asymptotic  behavior of the wave  function is shown as  follows: 

4 

-1, 4 

" 

J 

1 1  

< 

m =O 
(1) 

n=O 

The wave vector ko specifies  the  incident  plane  wave  in  channel aO, and km and K~ 

are  the wave numbers  for  the  relative motion of the free fragments  in the channels a m  
and fin, respectively.  The  transition  amplitude  for  channel @I is A 6 , k), and so 
forth. 

The  full  scalar  product of the  Hilbert  space is formed by integration  over a complete 
set of particle  coordinates. Any two of the  coordinates ro, rl, < and  R  along  with the 
coordinates  for  the  core  particles  can  be  members of a complete  set.  Coordinates 
other  than  position  vectors  will not be indicated  explicitly. If the pair (Fo, Fl) is used, 
the  volume  element  for  the  scalar  product  integral is dT = dFo dFl dz. The  Jacobian of 
the  transformation  from  the  pair (Fo, Fl) to  the  pair (R, r) has the  value (-1). Accord- 
ingly,  the  volume  element  can  also be written as d7 = dg dFdZ,  and  the  coordinate  basis 
vectors  can  be  taken  to  satisfy  the  relation Ira, rl, 5) = IR, r, 0.  The  pair of coordin- 
ates (Fo, Fl) may  be called the  "natural  pair"  for  the a channels.  The  variable Fl 
is the convenient  internal  coordinate  for  the  nucleus d. The  uniform  motion of the  frag- 
ments when their  separation  becomes  sufficiently  large  that  they no longer  interact is 

4 

f?n 0 

" -c 

" 

" - c  4 "9 

4 



expressed  most  simply  in  terms of Fo, the  relative  separation  between their mass  
centers. Consequently, the wave function  representative (eq. (l)), based on the  choice 
(Fo, Fl), attains  asymptotically in  the CY channels the form of an.eigenstate of the nonin- 
teracting  Hamiltonian for the CY channels.  For  the p channels, the asymptotic  form 
(eq. (2)) shows  that the pair (R, r) is the  natural  one.  The  formalism is first developed 
in terms of the natural  pairs of channel  coordinates. When it becomes  necessary  to  use 
other  coordinate  pairs, only slight  extensions of the formalism are required. 

" 

Let Sam be  the  subspace of the  total  Hilbert  space  that is spanned by all states of 
the  form 

where p(Fo) represents any state of motion for  the  mass  centers of the a! fragments, 
that is, for  particle  n  relative  to  nucleus d. Parentheses  are  used  to  indicate a scalar 
product  taken  over a set of variables  that is not a complete set for  the  total  system;  thus, 
p(Fo)@m(Fl, 3 = (To,?l, TIP@,) = (FoIp)(Fl, TI Gm). The  projection  on  the  subspace 
Sam is given by the  operator 

The  closure  integral  over  the  coordinate Fo in  equation (4) represents  the  unit  operator 
lr in  the  space of all states p of relative motion, which is called  the To space. 
SiAilarly,  let Spn be  the  subspace  spanned by states of the  form u ( x + ) ~ ,  where u(E) 
represents any state of relative  motion  for  the  particles 9 and (d-1) of the p chan- 
nels.  The  projector  for 6 is pn 

The  scattering state @ can  be expanded  in terms of the  complete set. @m (which 
includes  states belonging to  the  continuum  spectra of d). The  mth term  in  the expan- 
sion,  namely n,,@ = Urn@,, where Um is represented by 
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gives  the  asymptotic  behavior  in  the channel am. Thus,  for  large  values of ro, Um(Fo) 
becomes equal to  the mth  coefficient  in  equation  (l), if am is an open channel, o r  
vanishes if the  channel is closed. In the  same way, the  asymptotic  behavior  in channel 
fin is given  by II Q = V,(X+)~, where Vn(fi) = (fi, (XI&), I !k) . 

Any two channel  subspaces Sam and Gam, are orthogonal, if m # m',  simply 
because (@m = 0. Let  A  denote any selected set of a! channels  and B denote 
any  selected set of /3 channels. Then, the channel subspaces of the  set  A  together  span 
a subspace SA? which is the direct sum 

Pn 

and has the  projection  operator 

The  same  considerations apply to the  channel subspaces 6 The  overlap  integral 
Pn' 

gives  the  component of +m on Qj. 

the  property  that PQ yields  the  same  asymptotic  behavior  in all channels as does Q 

itself. The  projective  space 9 of P is the  open-channel  subspace, and its complement 
4, into  which Q = 1 - P projects, is the  closed-channel  subspace. In a reaction,  reson- 
ance  behavior  may  occur  because of the  formation of a relatively  long-lived compound 
state of the  total  system  or a long-lived state of an  intermediate  fragment, when channels 
with more than two particles are open. Such a quasi-stationary  state is described by the 
vector QQ. In configuration  space,  the  representative of QQ becomes  vanishing  outside 
regions  in which fragments of an open channel are interacting. 

A projection  operator P that  selects all the  open  channels a t  the given energy  has 

Assume  that no portion of the channel subspaces 6am or  EiOn belonging to open 
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channels is required  in  the  description of a true compound 
be chosen  to contain these  subspaces (ref. 7). In the case 

state and,  hence,  that B can 
of a nucleon-nucleus  collision, 

the  long-lived compound state of the  total  system  can be visualized as being  formed by a 
succession of particle  interactions.  The  process starts when the incident  nucleon inter- 
acts with the  target  nucleons  in  their  ground state of motion.  The true compound nucleus 
state is reached  through  sequences of interactions  in which the  motion of the compound 
system  becomes  progressively  more  complicated. Beyond some  stage  in  the  process, 
the  system is described by the part Q\E. The class of open-channel  projection  operators 
which will be employed is based on the  assumption  that,  in  the  expansion of @ in a com- 
plete set such as the +m, no open  channel Gm is required  in  the  description of the  com- 
pound system  after the excitation  sequences  have  attained a certain  degree of complexity. 
Then, there  exist  open-channel  projectors P belonging to  the class, since  (l-P)@  can 
describe  the later stages of the compound system  somewhere (depending on the exact 
choice of P) beyond this point. 

At the given energy,  let  the  set of all open LY channels be A' = (0, 1,2, . . . , Mo) 
and  the  set of all open p channels be Bo = (0, 1,2, . . . , No). B 9 contains  the sub- 
space 6 then P may  be  written  in  the  form 

AO' 

p="""" n A' n = o  

where no projects onto the  largest  subspace of 9 that is orthogonal  to 6 

ly, if 9 contains 5 then P has the form 
AO' 

BO' 

= nBo + 
Similar - 

(9 ) 

where no, projects onto the  largest  subspace of 9 which is orthogonal  to 6 Every 

open-channel  subspace B to be discussed  herein contains  the  channel  subspaces  in  their 
entirety  and  has a projector  that  can be expressed as in equations (8) and (9). The  chan- 
nel  subspaces  themselves are defined  differently  in  the  section RELATED  PROJECTION 
OPERATORS, but forms  exactly  analogous  to  equations (8) and (9) will  hold. 

BO' 

The  open-channel subspaces 9 of the class considered  herein are special cases of 
projective  spaces  that  contain  the  selected  subspaces eA and %. The  construction of 
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projection  operators  for  the  more  general case is treated. No complications arise  in  the 
more  general case. Such projection  operators II satisfy  the  subsidiary  conditions 

II (1 I I ) = O  n c B  fin 

The  projector II qualifies as an  open-channel  projection  operator of the  class given by 
equations (8) and (9) when the sets A and B contain,  respectively, A' and Bo. 

extent of the  subspace 9 in the Hilbert  space of the  problem. In the  effective  Hamilton- 
ian  for P\E, the  part  that  contains  the  rapid  energy  dependence  associated with  any r e -  
sonance  effect will have,  in  this  case, a smooth  energy  variation.  (The  effective 
Hamiltonian is given by equation (148) in  the last section of this  report, and  the  resonance 
part is the  second term on  the  right. ) In fact, 9 can  be  taken  to  be  the  entire  space, 
so that P is then  the  unit  operator.  Consider  the  scattering  problem  defined by a phen- 
omenological  potential  model,  to which are  ascribed  some  number of internal  states  that 
involve some  degrees of freedom  and  correspond  to  certain  excitations of a many-body 
system. Such a model is employed to  reproduce  the  part of the  direct  scattering  that 
involves  these  excitations  in  the  real many -body case.  The  Hilbert  space  in  the  model 
problem  corresponds  to a subspace of an  open-channel  subspace B in  the  full  many- 
body problem.  The  projector IIM onto gM is the  projection  operator  for a selected 
set of open channels  in  the  full  problem. An exact  generalized  potential, which corre- 
sponds  to  the  model,  can  be  expressed uniquely in  terms of ITM and P. The  scattering 
eigenstate e(+) given by the  potential  derived  from IIM satisfies I I M B ( + )  = e(+). This 
exact  potential is defined so  that e(+) yields  transition  amplitudes for the  selected  set 
of channels  that are identical  to  the  corresponding  energy-averaged  transition  amplitudes 
of the  system.  The  potential  will  have  imaginary  parts  to  simulate  the  effects of the 
excluded open channels, as well as the  energy-averaged  effects of the  processes  that 
proceed  through  the compound states. 

If now the  internal states appearing  in IIM are  replaced by the  corresponding  ap- 
proximate states employed  in  the  model,  the  resulting  projector nM acts  like  the  unit 
operator on the  scattering  state e(+) given by the  model.  The  projector  can  be  employed 
in  the  model  calculation,  however, as a formal  device  for obtaining  the coupled equations 
that  describe  the  reaction.  The  conditions  (eqs. (10) and (11)) can  then  be  regarded sim - 
ply as properties of the  projector  that are useful  in  constructing it. There are, of 
course,  projection  operators  other  than IIM, that  yield  the  correct  asymptotic  behavior 
in  the  selected  channels. An operator IIs having this  property could be a projection  into 

If no  compound states  occur  in  the  reaction,  there is no restriction  whatever on the 
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a subspace of pM. Such a projector may  belong  to  the  same class as riM, o r  may be 
entirely  different  from  the  type of projectors  discussed  here. In any  event, lIs enable u s  
to  write 

where lIS does not act like  the  unit  operator on e(+) .  The  corresponding  properties hold 
for nM and ns, the  counterparts  in  the  model  problem. In the  computation of the 
scattering  solution d+), the  resolution  into  two  orthogonal  parts  might  be  useful,  since 
the  part asd+) is limited  to  the  interior  (interaction)  region of the  configuration  space 
of the model. 

i 

In a phenomenological  calculation, the following  view can  be adopted: Employ the 
suitable  projector EM for  the  problem.  The  model  potential  that  should  be  used  ulti- 
mately is the  one  that  approximates  most  closely  the  exact  potential  derived  from  the 
associated IIM. In the  calculations, zM is always  taken as the  unit  operator  in  the 
problem,  and  the  potential is adjusted so that  the  scattering  given by the  model  agrees 
best with experiment. 

Transformation  Functions 

For every  pair of channels, a m  and pn, a transformation  function  can  be  defined. 
The  indices m and  n  will  be  suppressed for the  present  to  discuss,  for a given pair of 
channels,  the  tramformation  function 

and its adjoint 

When a vector  in R' space is operated upon  by K1, the  result is a vector  in ro space, 
and  conversely  for K1 t . The  evaluation of  K1 follows  easily: 

-c 
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In the  volume  element, the fact now used is that dFl = 8 dE when Fo is held constant. 
(This result is equivalent,' of course,  to  the  Jacobian of the  transformation  from (Fo, Fl) 
to (Fo, E) having the  value  [mp/(mn + m )] = 1/8. ) The  following  equation is finally 3 

obtained 
P 

where g(Fl) has been  defined by equation (7). From  the  transform K1, two iterates 
can be constructed,  namely, K = K K and K = K 2 K 1 .  These  iterates are nonnega- 
tive,  Hermitian  operators  in ro space  and E space,  respectively.  The  operators K 
and E are represented by the  expressions 

4 1 1  

and 
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In equations (13) to (15), the  operators are exhibited in  separable  form with the  trans- 
form  for  either Fo space  or E space  factored out in each case. The  separable  prop- 
erty of the  projectors  and  their  products  ensues  from  the  character of the channel sub- 
spaces, which they transform.  Each channel subspace itself is a linear manifold  whose 
vectors all have a certain  separable  form, 

The  operation of II, and Ii can  be  summarized conveniently in  the following set P 
of rules: 

n,@d = P 4  

In the next section, it is shown that  constructing a suitable open channel projector 
from II, and II requires  the  inverse  operators P . 

= (Iro - K)-l I 
But K1 is not,  in general,  represented by a separable function of the  variables (ro, R). 
A s  a result, K and  cannot be obtained  in  closed  form.  The  desired  projector  can  be 
expressed  in  terms of the  eigenfunctions of K and K, and  this  form  serves  to show its 
general  structure. The  eigenfunction  expansion, however,  does not represent a prac- 
tical  method of evaluation  because it requires  the difficult  preliminary  step of computing 
the  eigenfunctions. 

The  operators K and  have a common  eigenvalue  spectrum. If X Ku = ux, 
t K1 uh is an eigenfunction of T( with the  same eigenvalue. Let vh  denote  the  suitably 

normalized eigenfunction of (with the  square  integrable eigenfunctions  normalized  to 
unit  magnitude).  The  eigenfunctions  ux  and vx satisfy a pair of coupled  equations 

" 

2 
x 
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. . . . - . . . . - 

XK1 t ux = -vx) 

where X is real. Because @, x, and @ are bound states, the  kernels K and  van- 
ish exponentially when either of their arguments  becomes  large.  The  kernels are con- 
sequently  square  integrable  and,  hence, bounded (normalizable)  kernels.  The  eigen- 
value  spectrum is discrete  in  any  finite  interval,  and each discrete  eigenvalue has finite 
multiplicity. 

There is no eigenvalue  equal to zero.  The  expansions of K and E, in  their  respec- 
tive sets of orthonormal  eigenfunctions,  converge. The kernel K1 has the bilinear 
expansion K1 = Zx(l/X) luA)(vA I, whereas K and L have the expansions 

The set of u having  finite  eigenvalues is not complete. The additional  orthonormal 
functions  that  must be added  to  complete  the set can be considered as eigenfunctions 
belonging to the eigenvalue  infinity.  From the asymptotic  behavior of K, it is seen that 
for finite X, u  vanishes when ro becomes large. The  additional  eigenfunctions  do not 
enter  into  the  expansion  (eq. (19)) of K or  of its resolvent  kernel (the second term on  the 
right of eq. (20)). All the summations  just shown have no contribution  from  these ad&- 
tional  eigenfunctions.  However, when the  expression L = CA2(A2 - 1)-l IuA)(uA I is 
written, it is understood that the  sum  extends  over the complete  set. An exactly  parallel 
discussion holds for the expansion of and in  the  vA. 

x 

x 

THE PROJECTOR Ua+p 

Take  any pair of channel  subspaces 5am and 5&. A s  an  example of a linear  space 
that contains  these two subspaces, what  might be called the minimal one is first dis- 
cussed,  namely,  the space that is spanned by all the vectors of Sam and  combined. 
The  indices m and  n  may be suppressed  for  convenience,  and the desired projective 
space  designated by the  notation 
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When m = n = 0, the  projection  operator  for 5 qualifies as an open channel projec- 
tor  in  the two-channel case, where only the  lowest  internal  energy state in  each channel 
is open. The space defined by equation (21) can  also  be  prescribed by the  formulas 

a+P 

Here, SPPa is the  largest  subspace of 6 that is orthogonal  to sa and  can be viewed 
as the space spanned by the  components  orthogonal  to Ga of all the  vectors  in eP, or  
equivalently, of all the  vectors belonging to a basis set for  6 To the  equivalent  direct 
sums (eqs. (22) and (23)), there  correspond equivalent forms  for the  projector onto the 
subspace,  namely, 

P 

P' 

%nppa = O 

npncypp = O J 
Let a set of basis vectors  for 6 be y, uXx$, where  the  functions u,(R) form a 

4 

P 
complete  orthonormal  set  for  functions of E. Then CjPPa is spanned by the  vectors 
(l-na)yX, which have  the scalar products 

The  operational rule (eq. (16)) was used  in  the last step. If now the  choice uX = v, is 
made,  then with the aid of equation (18), the  vectors (l-IIa)y, will be orthogonal  to  each 
other  and X 2 1. An orthonormal basis set for 6 is given by the  vectors 2 

PPa 



II I I . . ". . . " - - " 

- 1/2 
where  the  normalization  constant is MA = (1 - Xm2) . In the  same way, an  ortho- 
normal  basis  for 8 is given by the  set OPP 

Z x = Mx(l - IIp)ux$ 

The  projector II can  be  written with the  help of equation (25) as PPa! 

and a corresponding  form  for IT follows from  the  basis  vectors (eq. (26)). Note that, 
if the  eigenvalues A2 = 1 occur,  the  corresponding  vectors  (l-IIa)yl are null vectors 
and,  therefore,  do not contribute  to  the  sum  in equation (27). 

The  projection  operator IT given by Mittleman (ref. 2) is now discussed.  This 

a!PO 

operator  can  be  written as 

Then, IT is defined by the following two properties: (1) for any state vector +, II+ has 
the  form 

and (2) II satisfies equations (10) and (11). Both  conditions (1) and (2) are required to 
specify  the  operator uniquely.  The form (eq. (30)) is desirable  for  computational  pur- 
poses. Coupled equations for u(Fo)  and  v(R), each  functions of a single  coordinate, 
describe  the  relative motion  in  the a! and p channels  in  terms of the  natural  coordin- 
ates for  each  channel. At a large magnitude of its argument,  each  function  yields  the 
corresponding  transition  amplitude  directly. 

That IT is identical  to IT is easily shown  and is fairly obvious from  the dis- a!+P 
cussion of I3 just given.  The  projective space of IT is limited by condition (1) to a!+P 
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contain no more than  and 5 , and by condition (2) is required  to contain  them in 
their  entirety. To  obtain R, and R equations (10) and (11) are written as P' 

cs 

Employing the  property (eq. (3C 

rI,(l - rI )(1 - rI) = 0 

rI (1 - rICY)(l - rI) = 0 

P 

P I 
I)) and  the  operational  rule (eq. ( 

IIJ1 - rI )a = rIJ1 - rIP)II,U$I 

rI (1 - Ha)* = nP(l - IICY)IIpvxlC/ 

P 

P 

It follows  that 

R, = II RII,(l - CY 

RP = rIpxIIP(l - II,) 

16)) then g jves  

where A and a r e  Hermitian  operators in  the  subspaces 5, and SP, respectively, 
with the defining properties 

rI XrI (1 - II,)rI - n P P  P -  P (3 4) 

The transforms 

permit A and x to  be  written as 
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Inserting  these  expressions for A and ii into  equations (33) and (34), along with equa- 
tions (3), (5), (14), and (15), shows that L and are the  inverse  operators given by 
equation (17). The  forms (eq. (35)) permit R, and R to be written as P 

Comparison of equations (36) and (37) with equations (24) and (28) verifies that II = II,+P. 
From  equations (32) to (34), R, = R,, R; = RP and R R = R R, = 0. The  idempo- 
tents R, and R a r e  not Hermitian,  however,  and  hence are not orthogonal  projec- 
tions . 

A  null  vector  results when (1 - IIP)n, operates on a vector  in the subspace 
= 6, n G ~ ,  the  intersection of 6, and 6 The operator  relation (eq. (33)) is 

2 
, P  P 

P 

8' 
understood  to be valid in the subspace of s,, which is orthogonal  to 6 QP' In geometric 
language, the problem posed in obtaining A by means of equation (33) is the following: 
Consider a unit vector  in 6, that is orthogonal  to 6 Subtract  from  this  vector its 
component  in 6 and  project  the  remaining  vector back into 6,. Find  the  operator A 
that  reconstructs the original  vector  from  the  value of the  projection.  Similar  com- 
ments apply to  the  interpretation of equation (34). 

,P' 
P 

Because 6 is a subspace of both 6, and 6 any  normalized  vector  in  the 
aP P' 

space can  be  written  in the dual form 

where p(Fo) and ,(E) are suitably  normalized  functions.  Operating on the relation 
(eq. (38)) with UP and II, gives,  respectively, with the  help of equation (16), 
K C p  = u and p = K1o. Comparison with equation (18) shows that a vector (eq. (38)) in 

with eigenvalue A2 = 1. The converse  holds as well, because ul@ is invariant  under 
the operation of II,IIpA,. Excluding 6 from the  domain of validity of equations (33) 
and (34) is equivalent  to the elimination of the  terms  in  the  sum (eq. (27)) that corre- 
spond to -x2 = 1. Actually, the relation (eq. (38)) imposes  severe  restrictions on the 
possible  functional forms of p(Fo), ,(E), gG1) and x(;). The allowed  functional forms 

corresponds  to  an eigenfunction of K (and to the associated eigenfunction of E) 

,P 
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are derived by Coz (ref. 3). However, u1 and v1 are given therein with an  incorrect 
sign  in  the exponential arguments. Taking the scalar product with I& on both  sides of 
equation (38) yields pg = q. The forms allowed by this relation are p a exp[-(1/4)~r2, 
g ot exp[-(1/4)~rl ,  cr cc exp[-(1/2)~R2],  and x a eXp[-(.l/8)~rg,  where K is a constant. 
Consequently, in  most  problems 5 is a null space,  and the case A2 = 1 does not 
occur. 

QP 

Projectors  like do not appear  promising  for  computational  applications. When 
more than two channels are open, the  construction of the  corresponding  projector  in- 
volves  the  solution of a set of coupled integral equations.  The computing effort  required 
in  the  preliminary  problem  becomes as great as that for  the  scattering  problem itself. 
However, the  methods  and  notation  developed  in  this  section  carry  over  practically  un- 
changed when the  related  projection  operators that can  be  evaluated  easily are developed. 
The  equivalence of the two definitions of ll,+p has  been  rigorously  demonstrated,  and 
either way of specifying  the projectors  to  be  discussed  hereinafter will be  freely  used. 

RELATED PROJECTION  OPERATORS 

Redef ined  Channel  Subspaces 

Suitable  projection  operators exist, closely  related  to lla+P, that do  have a simple 
closed  form.  These  projectors follow as the  result of describing one type of channel 
(e.g.,  the /3 channels) by a pair of variables  that are not the natural ones  for  these 
channels. Such a choice of coordinates is equivalent to redefining the  corresponding 
channel subspaces.  The  approach is suggested by the work of Chen  and  Mittleman, who 
have  given a projector of the kind desired. The projectors  derived  herein  have a more 
simple  form  than  theirs  and are more convenient for  computational  applications.  The 
two-channel case is treated first. It is then  easy  to  generalize  to any number of channels. 
The  projector of Chen and Mittleman is described within the context of this  discussion. 

projection  operators  that are expressible  in  closed  form  can  be  identified.  The two most 
suitable  operators  are  the  result of using a redefined a! channel o r  a redefined p chan- 
nel.  Consider now the  possible  choices of coordinate  pairs  from  the set ro, rl, E, 
and r. The first two variables  constitute  the natural pair for  the CY channels.  Other 
descriptions of the CY channels are now to  be  considered.  Retain  the  internal  coordinate 
rl, but leave open the choice of the  other  coordinate, p1 # rl, from  the  remaining  three. 
Similarly,  the  natural  pair  for  the P channels is (R, r), but now f i x  only the  internal co- 
ordinate F. The  other  coordinate, c2 # r' can  be freely chosen  from  the rest. Let 
and x2 be  the  Jacobian  determinants  for  the  respective  transformations (Fo, F1) -c GI, Fl) 

The  two-channel case is first  formulated with sufficient  generality that all the  related 

"e 

-c 

- " 

" 
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and (R, r) - G2, 3. Thus, + +  

The  transformations are linear, so that jl and j2 are real constants. 
The channel subspace g5a,m is defined as the space spanned by all states s @ ~  that 

can be represented by wave  functions of the form s ( ~ ~ ) @ ~ ( F ~ ,  = (pi, Fl, F(s@,> . Such 
wave functions are normalized on the volume  element dT1 = dzl dFl dp= I f l  I d7, where 
d7 = dFo dFl dg= d 8  dFdz. If the new coordinate basis vectors are required  to  satisfy 
the relations 

F1, F1, T )  = P1 I bo ,  r1, T )  -1/2 - - 
and 

all wave functions will be properly  normalized. 
The projection  operator  into the subspace Gatm is 

The  channel subspace 5 is spanned by all states  representable by P'n 

and has the  projector 
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For any  pair of channels, a r m  and P'n, the channel transformation  function (again 
suppressing  the  indices  m  and  n) is written as 

" 

where dv' = dro* drl' = dR* dr' = dr' drl'. Equation (41) clearly  shows that optimum 
forms  for  the  transformation function result when the  coordinates Fl and F2 are taken 
to be the  same  variable,  designated as 7;. When the same  coordinate is used  to describe 
the  relative  motion  in both channels,  the  transformation  function will be proportional  to a 
delta function  in the  coordinates,  and  the  integration involved  in  obtaining the first 
iterates will be trivial 

" " 

The  choice of variables has now been  narrowed down to p being  either ro o r  R. 
For the  sake of completeness,  another  possibility, is mentioned,  namely, cl = 

p2 = rl, which gives (< @ IFl, x*) = x(F)g*(Fl).  Because the kernel is separable in 
these  coordinates,  it is easy to  evaluate  the  first  iterates  and  to  construct  the  related 
projection  operator I Ia!,+P,. However, a projection  into  redefined channel subspaces 
for both channels would not appear to have any application, and this case will not be dis- 
cussed  further. 

-c -L -e 

" 

The Projector lla+pi 

Consider  first  the case where p'= Fo in equation (42). Then, natural  coordinates 
a r e  employed in the a! channel.  The  channel  subspace is 6, and dl = 1. When the 
coordinate pair (Fo, 3 is used with the channel, however, a redefined channel sub- 
space 6 serves  to describe the P channel.  The projector onto 6 is given by 
equation (40) with F2 = Fo. Thus, P'n  P'n 
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The  Jacobian /z has the  value 1, and equation (42) yields  directly the transformation 
kernel 

where 

From  Schwarz's  inequality, 

The  possibility of the two sides in equation (46) being  equal is excluded by the  reasonable 
assumption that x, as a function of Fl, is never  proportional  to  g(rl).  Because g+ 
is a term that occurs  in  the expansion of @ in the  complete  orthonormal  set of states of 
nucleus d-1, the normalization of the bound states @J and  to  unit  magnitude  implies 
that 

The  equality sign in equation (47) holds only if @ = g+. The bound state  nature of the 
function @J (or g)  and x shows  that 

h(Fo) M 0 when ro >> RA + Ft,, (48) 

The first iterates J = JIJJ and 7 = J1 t J1 are easily evaluated  and are seen  to  be 
the  same  operator  in ro space 

-b 
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The  operation of the  Hermitian, nonnegative operators J and 7 is merely multiplication 
by lh(FO)l2.  Henceforth,  the following simplified notation for  operators that are diag- 
onal in  the Fo representation will be adopted 

J1 = h l  
rO 

Jlt = h* 1, 
0 J (49) 

A normalized  eigenstate of J is 6,, where (Fol 6a) = &ia(F0) = 6(r0 - a), with the  eigen- 
value Ih(?; ) 1 '. The  continuous set {6a] is a complete  orthonormal  basis  for Fo space. 
In contrast to the  kernel K of equation (12), the  kernel J is not bounded: it has such 
a simple  form,  however,  that  the  required  inverse  operators  can  be  constructed  directly, 
and  eigenfunction expansions of the  operators need not be  resorted  to  at  all. 

" 

Operational  rules,  analogous  to  those of equation (16), are easily  established: 

The  subspace 6,+@, is the  space spanned by all the  vectors of 6, and 6 corn- @' 
bined.  The projector lI,+@, onto this  subspace  may  be  constructed  from  the  expressions 
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When the only open  channels are the  lowest cy and P ones,  then  the  corresponding 
rI 

that this projector is particularly  appropriate  for  the pickup process. The cy channel 
is then the incident  one,  and ITcy commutes with the  noninteracting Hamiltonian for the 
cy fragments. Hence,  among its boundary  conditions, IIcyCP'9 has the same incident 
plane  wave as a. 

cy+@, can be used as the open-channel  projection  operator. The form (eq. (52)) shows 

An orthonormal set spanning 6 is the continuous set of vectors ya = Sax+. The P' 
component of ya orthogonal  to 6, is proportional  to the unit  vector 

In the  last  step, equation (51) and  the equation J16, = h(2)Ga were  used.  From  equa- 
tion (54) and  the  projector  properties of ITcy, 

= n2(z)(1 - lh(z)l2)6(a - a') 
" 

- 1/2 
If the normalization  constant is chosen  to  be n ( z  ) = (1 - lh(a ) I 2, , the  vectors ra 
constitute  an  orthonormal  set.  Accordingly, 
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= n lr [IIp?(l - II,) + II  II ?(Ha - l)] 2 
%PO! 0 , P  

The following relation  was  required  in  arriving  at equation (55): 

me product  relations involving II, and II which are the direct analogues of equa- P?' 
tions (13) and (14), were  used  in  the  step  to equation (56). If the  vector wo, orthogonal 
to ?fi,, is defined as wo = n(x+ - h@),  where it is understood  that  n  and nh are vec- 
tors  in ro space, the  projector  can  be  written  in  the  concise  form II , = lr I wo)(wo I. 

Another  expression  for I I a C P ? ,  corresponding  to  equations (29) and (30) in  the  prev- 

- 
P P  0 

ious  case, is 

where 

N 

R,@ = F@ 

R ,@ = Gx@ P 

and F and G are vectors  in Fo space. The  other  property,  in  addition  to  equa- 
tion (57) and (58), which determines  the  projector uniquely can be written 

N 

IIJ1 - n p w  - TI,+pA = 0 

np(1 - n,)(l - n,+pA = 0 
(59) 

Combining  equations (57) and (58) with equation (59) and  using  rules  (eq. (51))  give 

and 
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where A. and no are Hermitian  operators  in  the  subspaces 6 ,  and  respec- 
tively, which are defined by the  relations 

P" 

It is clear that R, and R are idempotents  and  satisfy R R = R 'R, = 0. The 
separable  forms,  similar  to equation (35), 

N N N 

P' 0 P' P 

enable  the  conversion of equation (61) into the  equivalent  equations  in Fo space 

O(lro - J) = 1 
'0 

G(lro - r) = 1 
r O  

From equation (50), the  solutions are simply 

When the  solutions (eq. (62)) are inserted  into  equation (60), the  result  can be written as 
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Comparing  equation (63) with  equation (56) and  using  the  identity (1 + n I h I ) = n 
verify that the  forms (eqs. (52), (53), and (57)) are equivalent. 

2 2  2 

The Projector llal+p 

The  other  choice  for  the  variable  in equation (42) is p'= 5. In this case,  the  coor- 
dinate pair for  the P channel is the  natural one.  The  channel subspace is 9 and 
j2 = 1. When the pair (R, r 1) is taken  for  the a! channel,  the  redefined  channel  sub- 

1/8, and  the  transformation  function I1(R, R') = (R, @ I%,, x+) is the (diagonal) represent- 
ation of the  operator I1 = (1/8)1 lR, where 

" Pj 

space has the  projector II,,, = lR I @ )($ 1. The  Jacobian /.. has the  value 4 - m  P 

1(R) = 1 g*(R - :r) X(rv) dr f  

The first iterates of I1 are simply I = j2 = (1/64) 11 I 1 These  Hermitian  operators 
possess  the  continuous  set of eigenstates 6b(R) = 6(R - b ), which a r e  a complete  ortho- 

2 - 4 -R' 
- 

normal  set  for E space.  The  vectors xb E 6b$ span sa!,. 

has the  projector 
The  subspace Sa!c+p, which is spanned by all  the  vectors of st),, and $3 combined, P 

Iv 

zv 
where R,, i4?= F@, RPi4? = Gx+, and F and G are vectors  in 6 space. The form 
(eq. (64)) shows  that  open-channel projectors of this  type will be  useful  for  the  stripping 
reaction.  The  vectors 

N zv 
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Eb = m ( b ) ( l  - Isg)% 

- 1/2 
with normalization  constant  m(g) = [l - (1/64) I2 (g) 12] ., are an  orthonormal set and 
SWn Garpp.  Hence, 

= 'm l R ( l  - Ii )ll ,(1 - nB) 2 
P a !  

where  the  vector wOt = m[@ - (1/8)2 *x+] is orthogonal  to sfi The form (eq. (65)) can 
be evaluated by a sequence of steps that directly  parallels  those which lead  from  equa- 
tions (57), (58), and (59) to equation (63). The resul ts   are  

P' 

and 

where it is found that 

2 A - m  lRna!, N -  

and 

The  identity lR + m I = m lR is used  to  verify that equations (64) and (65) a r e  equiv- 
alent . 

2-  2 
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The Projector lla+c 

The  subspace spn is defined with reference  to a specific pair of internal states for 
the p fragments 9 and d- 1, as indicated by the notation (x+), = x.+. . Consider  the 
set of all channel subspaces  obtained with a given state +. when xi runs  through a com- 
plete set of states of the  nucleus 9, including those  in  the continuum. These spaces are 
orthogonal to one  another,  and  their direct sum is denoted by Gcj. Alternatively, 6 
can be characterized as the  subspace  spanned by all states that are representable  in  the 
form g(R, r)+.(z). The  projection  operator  for  the  subspace  spanned by all the  vectors 
of sa, and 6 combined can be  applied  to  the pickup or  stripping  process.  This type 
of projector has been  discussed by Feshbach (ref. 1). 

1 1  

I 

cj 
" 

I 
cj 

The  projector onto 6 can be written  in  various  forms,  namely, cj 

The  transformation function K2 is easily  evaluated 

Hereinafter in  this  section, the indices  m and j will be  supressed. The first   i terate 
Kt = K2K2t is an  operator  in Po space, while the iterate = K2 t K2 transforms  states 
of motion of particles 1 and 2, that is, operates on vectors  in (rorl) space.  Evaluating 
the kernels 

" 

shows  that they are the  representatives of the operators 
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K ' = c  1 2 
O ro 

where w1 is the unit vector w1 = (c0)-$. The eigenstates of K', all having the  eigen- 
value co, are any  complete (in Fo space) orthonormal set {X,}. From the normalized 
function  wl(Fl), an  orthonormal set {wv(Fl)) can be built  up that is complete  for  func- 
tions of Fl. Then  the  eigenstates of E may be enumerated as the set X p~ belonging 
to the eigenvalue ct, plus the set X w v = 2,3,  . . . , belonging to the eigenvalue 
zero.  Also  required are the  relations 

2 

P v' 

and 

Operator  products involving II, and IIc may  be  written  in  the  separable  form as, for 
example, 

and 
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Now the  projector onto the subspace  can be constructed  from  any of the equi- 
valent  forms 

where R,' a = F'$ and Rc'E = T*. The form (eq. (70)) follows from  the fact that 
is the direct sum of 6, and  the  largest  subspace of 6, that is orthogonal  to 

6,. The subspace 6, is spanned by the set {X $1. The unit vec  ors N ( l  - IIc)XP$ 
= NXP(@ - g*), each with the normalization  constant N = (1 - co) , are an ortho- 
normal set that  spans Note that co 5 1. The  equality  sign  holds only if $ is 2 

proportional  to *, in which case, G,+~ = 6,. Hence, the required  projector  for equa- 
tion (70) is 

%+C 

P 2 -1h 

where qOt = N($ - g q ) .  The orthonormal  vectors z = X w I) span GC, and  their 
normalized  components  orthogonal  to 6, are 

ccv cc v 

- z = ( l - n  )z = z  v = 2 , 3 , .  . . 
P V   P V   P V  

The vectors 5; are orthogonal  to  one  another as well, so that 
P V  
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I- 1 

where pot' = N(wlq - co$). The projector  can  also be written  in the form 

%pa, = (1 - II,)F(l - IIa) 

in which 

(73) 

/.I.= 1 v = 2  

By the now familiar  procedure,  form (72) is obtained  from  equations  (like eq. (31), 
but  with II, instead of II ) that impose the condition  that contain  the  subspaces 
6 ,  and 6, but no more.  Accordingly, 

P 

R,' = II,A'II,(l - II,) 

R C = IIcX'IIc(l - IIa) I (7 5) 

where A' and  satisfy the respective  relations 

II,A'II,(l - IIc)IIa, = ll, 
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ncFnc(l - I I p c  = nc (77) 

Inserting  the  separable  forms A' = L' I $)($ I and = E' I *)(* I into  equations (76) 
and (77), respectively,  shows that 

and 

- L' = (Lr lr - F)-1 
0 1  

From  the  structure of K' and given by equation (68) ,  it follows  that 

L' = N 1, 2 
0 

and 

m 1 

The  expression  for E' is its expansion  in  the  eigenvectors of K' and  confirms  the 
equivalence of the  definitions  (eqs. (74) and (77)) of E .  The  condition n,(l - IIa+c) = 0 
yields  the  identity Ha = Ra' + naRC.  Hence, equation (72) can be  written as 

equation  (71)  explicitly. Note that the set wv serves only as an  intermediate  construct 
for  deriving  the  projection  operators. All wv for  which v 2 2 can  be  eliminated  from 
the f i n a l  forms with the  help of the  closure  property. 

= IIa + (1 - IIa)Rc,  which, with equations (75) and (73), shows  the  equivalence  to 

MULTICHANNEL  PROJECTION  OPERATORS 

The Projector nA+BI 

The  two-channel  projection  operators given in  the  preceding  section  are  easily  gen- 
eralized  to any number of a and  channels. In this  section,  the first case treated is 
the  extension for  the  projector IIa+p,. The  corresponding  discussion  for  the  projector 
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n ~ t + ~  
closely  parallels  that  for and  need  not  be  given  explicitly.  The  redefined 

6 channel subspace 6 B ,  is the  direct  sum of the  orthogonal  subspaces 6B,n, n C B, and 
has the  projector 

where II is given by  equation (43). Now the  projection  operator onto the  space 
$A+Bt spanned by all vectors of GA and sB, combined is required.  The  projector 

P'n 

may  be  written as 

where  the  operators  in equation (80) have  the  properties 

Sums  over  m anc d n with unspecified limits will be understood,  henceforth, to range 
Over the select& values  contained  in  the sets A and B and to comprise M and N 
terms,  respectively. 

The transformation  functions are given by equations (44) and (45) as 

where 
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The ar ray  of operators (in Fo space)  Jl(mn)  can  be  represented as a matrix 

J 1 = l  h 
r O  

(84) 

where h(Fo) is the M X N dimensional  matrix  whose  elements are the  functions given 
by equation (83). The iterates 

J(Fo, Fof; m,  mf)  = En Jl(ro, rot'; m,  n)  dFoffJ2(F{f, Fof; n, m f )  
4 -  

represent  an  M-dimensional  square  array of Operators (in Fo space)  J(m,  mf), which 
can be written as J = 1 hht . Similarly, = J ?J gives an N-dimensional  square 

array 5 = 1 hth. Note that J(m,  mt)? = J(mf,  m),  J(n,  nf)? = r (nf ,  n). Only the diagonal 

operators of the arrays J, 1 are Hermitian. A normalized  eigenvector of J (m,   mf)  
and  r(n,  nt) is 6,, with respective  eigenvalues  [h(z  )ht(a)hml  and [ht(z )h(z )h,. 
In addition, 6, satisfies the  eigenvalue  equations 

r O  1 1  

r O  

Once  more,  the  operator  products are easily obtained in  the separable form 

The  required  operator  rules also follow directly 
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The subspace $3 is spanned by the orthonromal set { yan = 6a(x+)n}. The N 
sets, each having a value of n C B, a r e  orthogonal  to  one  another  and  provide  an  ortho- 
normal basis for sBt. The basis vectors yan have  components  orthogonal  to $ 5 ~  
given by 

P'n 

= 6  w a n  

'in which x,, = 6 a @ m, wn E (x+)n - Cmhmn@,, and hmn is understood  to  be a vector  in 
ro space.  The  operator  rules (eq. (87)) and  equations (85) and (86) have  been  used.  The 
scalar  product 

4 

- 4  

= 6,,6(a - a') - zmhmn*(g)hmnt(z)6(a - a') 
" 

shows  that the sets {Fan} are not orthogonal. 
To each value of 2 there  corresponds a set of N vectors Tan, n c B. If the 

vectors of this  original  set are independent,  any orthonormal  set  constructed  from  them 
will also contain N vectors.  The scalar products given by a set of N vectors  form  an 
N-dimensional  Hermitian  matrix. An orthonormal  set of vectors  can  be obtained from 
the original  vectors by the  unitary  transformation  matrix U(?L ) that diagonalizes the 
matrix. If the  Hermitian  matrix is interpreted  to be the  representation in some (ortho- 
normal) basis of an  Hermitian  operator,  then  in  the well-known way U ( g  ) transforms 
to the new basis made  up of normalized  eigenvectors of the  operator. (The columns of 
U are the  components of these  eigenvectors  in  the old basis. ) The  same  transformation 
on the original set of N vectors  yields  an  orthonormal set. Such orthonormal  sets, 
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obtained for  each  value of z, span  the  subspace 6 and  provide a convenient expres- 
sion  for its projector. 

To obtain an  orthonormal basis for the  subspace  6BfpA,  consider  the  diagonalization 
of the  matrix lN - ht(z   )h(z  ). For  the  time being,  the  dependence on of the  matrices 
and  eigenvalues that arise in  the  discussion will be suppressed.  The  matrix  hth is 
Hermitian, so that  there is a unitary matrix U that  diagonalizes it. Thus,  write 
UththU = hD = (6mfhn),  where hD is a diagonal, real (N-dimensional)  matrix.  Because 
h t h is nonnegative, the  eigenvalues  hn are also nonnegative. The  columns of U are 
normalized  eigenvectors of h t h. A  certain  lack of uniqueness  to  the  matrix U exists. 
The  matrix UU,,, where UD is any  diagonal,  unitary  matrix, will serve as well  and 
corresponds  merely  to  multiplication of the column  eigenvectors of U by phase  factors. 
The  Hermitian  matrices are defined as d = lM - hht and a = lN - h t h  and are related 
as follows: 

B'pA 

dh = hTi 1 

The reciprocal of the  relation U%U = lN - hD gives 

The linear  combinations of the  vectors (eq. (88)) 

satisfy  the  orthogonality  relation 

Because a representative of 6a is the delta function 6(r0 - a), the  vector Yan can  be 
written Yan = 6a [a,), where 

" 
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and  the  quantities NnUn,n and NnUn,,hmn, become  functions of r' in  the  coordinate 
representation of Yan. The  normalization  Nn(Z) = [ 1 - hn(z)]-1/20 makes  the Yan 
orthonormal, so that 

If hn(z)  ever  assumed  the  value 1, the  corresponding  vector Yan would be a null vec- 
tor, which implies that the  vectors Tan and  n C B, are not independent. Exclude  this 
possibility,  and  assume  that  the  matrix  d( a ) is never  singular  for  any  value of a', 

Then, equation (93) can  be  expressed, with the  help of equation (go), as 

"L 

The  matrix U has  dropped out of the  form (eq. (95)),  which shows  that  the  arbitrariness 
in  the  choice of U is not significant. 

The  form (eq. (80)) can be derived  from  the  relations  analogous  to equation (59), with 
a and fit replaced by A and  B',  respectively.  The  derivation  leads  to  expressions 
for EA and %, that are the  direct  analogs of equations (60), where  and are 
now operators  in G~ and  GB,,  respectively,  and  can  be  written as 

and 

Both 0 and Om, are Hermitian  operators  in Fo space, with matrix  elements 
Omm,(ro, rot) = (ro,  +m 1 AM I ro', Grn,),  and so forth. When the  expressions  for l+, 
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and +, are inserted  in  their defining  equations,  which are the  direct  analogs of equa- 
tion (61), the equations for  the  operator  arrays 0 and 0 are obtained. In matrix nota- 
tion, these  take  the  form 

- 

and 

bl ( ro lN -')= 'rO1N 

from which it is clear that 

0 = d- lr 1 
0 

and 

5 =a- lr 1 
0 

Collect  the  results  to obtain 

and 

Thus, RA and %,, as seen  immediately  from  their defining equations (the analogs of 
eqs. (60) and (61)), are idempotents  and  their  product  in  either  order  vanishes.  Com- 
parison of equations (96) and (97) and equation (95), with the  help of equation (89), verifies 
the  equivalence of the  forms (78) and (80). 

rv 
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The Projector of Chen and Mittleman 

me projection  operator  given by Chen and  Mittleman is closely  related  to IIA+B,. 
In terms of the  formalism  presented  in  this  report, Chen  and  Mittleman  employ  the  chan- 
nel  subspace 6- defined as the space spanned by all vectors of the  form  P(w)n, 
where p is a vector  in ro space  and (@)n = q I). The  component qn is defined by 
the  representation 

my 4 

n I '  

The  projection  operator  for 6 - is 
Pn 

The basis vectors  for  the  subspace are represented by 

The  subspaces 6-  are not mutually  orthogonal.  The scalar product of the basis fin 
vectors is 

where  the  functions  defined by 

* 
form  an  N-dimensional  matrix v(ro), which is Hermitian  and  has  diagonal  elements 
equal to 1. Suppose the  matrix v(G0) is diagonalized by the  unitary  matrix @(lo), that 
is, 8 t ve = (bnntvn) = vD. Then, the  linear  combinations 
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are orthogonal.  Their scalar products are 

so that the  normalization R,,(.',) = vn(io)1- 1/2 makes  them  orthonormal. The matrix 
v(ro) is assumed  to be nonsingular. The subspace s ~ ,  spanned  by all subspaces eFn, 
n c B, has the projector  operator 

A 

The  relation v-' = O(vD)- 1 7  0 was used  in the first step. 

operator 
The  subspace sA+g, spanned by eA and GB, combined, has the projection 

where 

- 
RA'k = ZmFm@m 

- 
RS* = xnzn(q+)n (103) 

and Fm, En are vectors  in ro space. The  channel transformation functions are 
-c 
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with 

Rather  than  construct llA+g by the  orthogonalization  process  indicated  in  equation (101), 
only the  expression (eq. (102)),  which is the result of Chen  and  Mittleman, will be  given 
for  comparison with the  corresponding  form of 

The  conditions 

and 

and 

and 

%- = n$cndl - HA) (106) 

Here, Ac and Kc a r e  Hermitian  operators  in eA and 6- respectively, and satisfy 
the  relations 

B' 
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When equations (108) and (109) are inserted  into  the de€ining equations  (eqs 
latter  reduce  directly  to  the  equations 

- 
C(1, IN - lr A t AV -1 ) = 1 v -1 

0 0 r O  

The  solutions are 

c C = l  B- 
rO  ' I  

c= 1 ( V m - 1  
'0 J 

where  the  matrices B(Fo) and  B(ro) are defined by the equations 
" 

41 



B = lM - Av-' AT 1 
and  satisfy the realtions 

B- l  = lM +AB v- "1 1 AT J 
When the  solutions (eq. (110))  along with the f i rs t  of equations (109) and its adjoint a r e  
employed  in  equations (105) and (106), the following equations are obtained: 

The relations (eq. (112)) and  the  matrix D = vg, cast equations (113) and (1 14) into 
the  form given by Chen  and  Mittleman. 

The  projector TIA+g is not as convenient to apply as IIA+B,. Because of the expo- 
nential  functions  present,  the  overlap  integrals (eq. (104)) a re   more  complicated  than  the 
integrals (eq. (83)). For  the  same  reason,  the  operators (eqs. (113) and (114)) are more 
difficult  to  employ  than  equations (96) and (97). Moreover,  the  components of %-!@ in 
equation (103) are not orthogonal,  and  the  resulting coupled equations  for  the  functions 
F,(Fo) and zn(F0) cannot be manipulated  into as convenient forms  for  numerical cal- 
culations as the  equations  for Fm and Gn. The  boundary  conditions on the  functions 
Gn(Fo) are somewhat  more  simple  than  those  for  the Gn(Fo), as shown in  the  section 
Asymptotic  Properties.  This last feature  makes  little  difference  in a numerical  treat- 
ment,  however.  More  complicated  projectors,  similar  to TIA+g, are required only when 
the  recoil of the  target  must be taken  into  account (ref. 6). 

- 
N 
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The Projector lIA+c 

Recall that the subspace $j is spanned by all vectors of the form g+. (where each 
b is represented by a function of the variables E, or  of To, Tl) and that it has the 
projection  operator given in equation (66). Any selected set of states of the nucleus d- 1 
corresponds  to a set C of j values.  The  subspace GC is defined to be the  direct  sum 
of the orthogonal  subspaces 6 for all j c C and has the projector 

cj I 

cj 

nc = ncj 
j cC 

The generalization of the projector lla+c is the projection  operator llA+c for the sub- 
space  spanned by SA and J+ combined. 

In discussing the transformation  functions  for this case, it is convenient to define a 
vector  g  in r l  space whose representative gj,(Fl) = (Fl 18. ) is the overlap  inte- 
gral  (eq. (7)). The transformation function (eq. (67)) and its adjoint  represent,  respec- 
tively,  the  operators  K2(mj) = 1 (gjm I and K2(mj)? = 1 lg. ). The iterates 

-c 

jm 1m 

r O  ro  Jm 

correspond  to  the  respective  operators 

where  the  constants 

constitute a Hermitian  "dimensional  matrix. The p(j, j?)  form  an N"dimensiona1 
array of operators  in (ro, rl) space, where N' is the number of j values contained in 
the set C. Note that K'(rn,m')t = K'(m',m)  and @(j, j t )?  =?lit (j', j ) .  

" 
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The  required  operator  products are 

The operational  rules are conveniently summarized as follows: 

A basis for 6 is given by the following construction.  Consider the set of M 
vectors {gjm,  m C A} in Fl space.  From  these  vectors  construct  an  orthonormal set 
w.-  On the  assumption that the g are independent, the new set  also contains M 
menbers  and  the  index 7 can be taken  to  have  the  values 7 = 1, 2, . . . , M. Now 
suppose that the set wjv, of which the first M members  are  the w.-, is a complete 
orthonormal  set  for  functions of rl. The vectors w. I; 5 M + 1, a re  orthogonal 
to the original  gjm,  since  the latter vectors are linear  combinations of the w.- only. 
The  vectors w. that complete  the set a re  not unique, of course. The  constants are 
defined as 

cj 

1 V' jm 

- JV 

JV' 

J v  
36 

with b m, jl; = 0 and  gjm = Z-b .-*w.- It will be convenient to  use  the index K to v m , ~ v  J V '  

specify  the  pairs (j, 3, which number % = N'M. The  constants bm, jy = 
t 

form  an 
M x E matrix b. Directly  from equation (116), cmmt = (bb )mml and  from  equa- 
tion (115), 

- 
bm, K 

44 



Thus, in r l  space, F'(j, j ') operates only in  the  subspace  spanned by the  set {w. -} 
and transforms  to a vector  in  the  subspace  spanned by the  set (wjF}. Finally,  the 
desired  orthonormal  basis  vectors spanning 6 are z 

I'V 

cj cL, jV .  1-1 I V  I 
= x  w. q.. 

The  projector HA, can now be  easily  constructed by the  methods that have  been 
used  previously  from  the  forms 

where 

RA'@ = ZmFm' Gm 

R c @  = Z-T-q-  I l l  

and Fml, T.  are,  respectively,  vectors  in ro space and (Fo, Fl) space.  The  form 
(eq.  (118)) leads to  the  examination of the  vectors 

l 

which separate  naturally  into two subsets, namely, 

Z 

where 
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The  subspace 6 is spanned by the  totality of vectors Z given  by  equation (122). 
Because of their  factors X any two vectors  having  different  values of p are ortho- 
gonal.  Also,  any vector Z is orthorgonal  to  every  other  vector.  Thus,  to  obtain  an 
orthonormal basis that spans 6 construct,  for  each  value of p, an orthonormal set 
from  the  vectors z 

CPA 1-1, j v  
P? 
P ,  j v  

p,jF E 'P, K 

CPA, . The scaler products 

suggests  introducing the Hermitian  matrix Z = la - btb which is associated with the 
matrix a = lM - bbt by the relations ab = bB and 5-l = lm + b t a -1  b. A  unitary 
matrix U that diagonalizes Z as 

UtEU = ZD = [Z 6 ] 
K KK' 

gives the orthogonal  vectors 

It follows from equations (124) and (125) that 

The  normalization of the vectors (eq. (126)) is accomplished by the choice NK = ( 'ZK)- . 

normal basis for GcpA. The  projector  for  this  subspace is 

1/2 

The set of vectors  made up of the  totality of the Z p K  and  the Z is an  ortho- 
P ,  1; 

46 



where  the  relation Z-' = U(ZD)- 1 - t  U has been  used. When the  second  sum on the  right 
of equation (127) is augmented by the  terms  required  to extend  the summation  over all 
values of the  indices,  the  result is simply IIc: 

Equation (127) can  also be written as 

where 

and 

which give 
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where AT and are, respectively,  operators  in fiA  and GC defined by the  relations 

b 

Inserting  the  forms 

and 

into  the defining equations  (eqs. (13 1)) yields 

L'(lrolM - 1 bbt) = 1, lM 
r O  0 

and 

The  solution of equation (134) is LT = 1, a-l, and it is easily  verified  that  the  solution 

of equation (135) is given by equation (130). The operators  (eqs. (129) and (133)) are 
identical, so that nc A = (1 - IIA)Rc. It is evident from  equations (128) and (130) that 
the  vectors w;, 2; 2% + 1, have  been  eliminated  in  the  final forms of by the 
closure  property. 

0 

COUPLED EQUATIONS AND THEIR BOUNDARY CONDITIONS 

Asymptotic  Properties 

The operators developed in the  preceding  sections act on the total  scattering state 
Ik to  produce  components  whose  coordinate  representations  yield  asymptotically  the 
transition  amplitudes  for  the  reaction  in  the  various channels.  The  projector H a y , ,  for 
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example,  operates on 9 to  produce a component Um(;o)$m, given by equation (6), 
which at large  values of ro has the  behavior of the am  te rm on the  right of equation (l), 
if channel a m  is open. Of course, Um(ro) becomes  vanishing for  closed channels. 
Similarly,  the component. Vn(g)(x$)n projected out by II has the  asymptotic  behavior 
given by equation (2). The  corresponding  properties of the  components  produced by the 
projectors  for  the  redefined channel subspaces are illustrated by the  examples of 
and IT- which are defined by equations (43) and (99), respectively. 

Pn 

'prn 
pn, 

Write 

where 

and 

The  integrations  in  the  scalar  products can be  performed with the volume  element 
d7 = dFo dr  dt ,   in which case  the  suitable wave  function representative is (ro,  r, 5 I @ ) .  
The  asymptotic  behavior  in the p channels of the  wave  function based on the  coordinate 
pair (Fo,;) is obtained from  the  expressions 

" " 

which show that, for  large  separations  in  the channel, 
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From equation (2), 

where  qn(ro, r) is given by equation (98). The asymptotic  behavior of Yn(Fo) and 
yn(Fo) follows  directly: 

L . - L  

nl=O 

The  functions 

A 

are closely  related  to  the  functions vml(ro) given by equation (100). Equation (137) 
shows  that,  in terms of the coordinate pair (Fo, 3, the wave  function at large  separations 
in  the p channels is a sum of functions that are not orthogonal on the scalar  product 
over the internal  variables of the /3 fragments.  Each  term  in the sum  contributes  to  the 
projection  in a given redefined p channel. The  phase  factor  in T+,, which multiplies a 
spherical wave on the right of equation (137), depends on the  coordinate r' as well as 
ro and  shows  explicitly  the nonuniform nature of the  asymptotic  motion  in  the p chan- 
nels when described by the  coordinate  pair (Fo,y). 

* 

The  projection  operator (eq. (66)) produces  the  component 
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where W. is a vector in (R, r ) space,  or equivalently, in (ro, rl)  space. The expan- 
sion 

- c - L  " 

I 

is convenient for  discussing  the  asymptotic  properties of W. (R, r). The  sum on the  right 
of equation (141) includes  the  continuum  states of 9 as well as the bound states. At 
large  separations  in  the p channels, that is, for  large R and r 5 %, the  discrete 
terms in the  sum  have  the  asymptotic  behavior given by equation (2). In contrast to the 
components (eq. (136)), which refer to  specific /3 channels,  the component (eq. (140)) 
does not vanish at asymptotic  values of the variables  in the  open  channel am. This 
asymptotic  contribution  in channel am corresponds  to  the  projection of Gm on +. and 

J 
is described by a superposition of continuum terms in  the sum (eq. (141)). The  contri- 
bution is missing in the term II 9 from equation (119), and  therefore  this  term  does 
not yield  the  complete  asymptotic  behavior  in  the a channels. If the  three particle 
channels (n,  p, and d-1) are open, there will be  additional nonvanishing continuum com- 
ponents ai@), at large  values of R, corresponding  to the appropriate continuum states 
of 9. 

The coupled equations  describing  the  reaction can be  formulated  in  terms of the 
components F, and Gn of equation (81), Fm and Gn of equation (103), o r  F,' and 
T. of equation (121). The  asymptotic  properties of the  component functions  provide  the 
corresponding  boundary  conditions  that  define  the  desired  solutions of the  system of 
equations. From  the  conditions  analogous  to  equations (10) and (ll), namely, 

" 

I 

APC 

I 

a r e  obtained, with the help of the  operator  rules (eq. (87)), 

Urn = F, + znJl(mn)Gn 

Yn = ZmJl(mn) t Fm + Gn 

From  the  property (eq. (48)) on the  matrix  elements (eq. (83)), it follows that 
Fm(ro) - Um(Fo) and Gn(Fo) -. Yn(Fo). The  functions Fm(Fo) for  the a channels  have 
the  usual outgoing and incident  wave  behavior given by equation (1). However, the  func- 

-L 

tions  for  the p channels  require that the boundary  condition of outgoing waves only be 
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imposed on appropriate  linear  combinations,  namely, 

When the equations  analogous to equation (142) for IIA+g (with II- replacing IIptn) 
are employed,  and  the  vanishing of the  matrix  elements (eq. (104)) at large ro is taken 
into  account, 

Bn 

Hence, the outgoing wave  boundary condition applies directly to  the  functions Gn(ro). 
" 

The  analogs of equation (142) for HA+, (with ll appearing  in  place of  IIp,,.,) give 
cj 

U m = Fm' + ZjK2(mj)Tj 

W . = C  F 'g + T  J m m j m  j (145) 

Asymptotically  in  the /3 channels, both ro and rl become  large, and equation (145) 
shows  that 

In the a! channels,  however, rl remains bounded as ro becomes  large,  and 

52 



Coupled Equations 

In the method  given by Feshbach (ref. l), the  Schrodinger equation (E -jll)Q = 0 
yields  an equation for P* 

(E - H)P@ = 0 (147) 

in which the effective  Hamiltonian is 

Here, P is the open channel projection  operator, Q = 1 - P, and % = IMQ, and so 
forth. In the  case of the pickup reaction, P can be chosen as one of the  projectors  in 
the  section MULTICHANNEL PROJECTION OPERATORS, where all the open channels 
are included in  the  sets A  and B. If there are open three-particle channels,  the pro- 
jector IIA+, would be  required. 

The  projector  IIA+Bt  in  the  form of equation (80), for  example,  leads  to a set of 
coupled equations for  the functions Fm(Fo) and Gn(Fo). Operating on equation (147) 
with II,, and IIPtn, respectively,  gives 

E 

L n=O 1 

1 
The  boundary  conditions for  the Fm are given by equation (1) and  for  the Gn by equa- 
tion (143). The form of IIA,, given by equations (78) and (94) produces channel com- 
ponents which are all orthogonal  to  one  another.  The  resulting coupled equations are 
analogous  to equation (149), but  they have a more convenient form with only one  channel 
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function  appearing on the left side of each equation. On the other hand, the unitary 
matrix Unln(F0) in  equation (92) must be evaluated  in this approach. 

An appropriate  separation of the total  Hamiltonian is associated with each  type of 
channel.  The separation  corresponding  to  the a! channels is X =  T, + X, + V,, where 
V, is the  interaction  between the a! fragments, T, is the  sum of their  center-of-mass 
kinetic  energies,  and da is the  sum of their  internal  Hamiltonians (with each  internal 
Hamiltonian referred  to its fragment's own center-of -mass  system).  There is a similar 
resolution  for  the P channels. Recall  that  the  projector is based on the  choice 
of natural  coordinates  for the Q! channels.  Consequently, the  usual  form of T suffices 
for  the partial wave expansion of the functions Fm(Fo). The  kinetic  energy  operator  T 
however, must be expressed in a form  suitable  to the choice of coordinates (Fo, 3 in the 
P channels.  Since  the  core  nucleus d-1 is infinitely massive, the reference  frame 
provided by the fixed core  itself has been  used. In this  reference  frame, T - (1/2M )F2 
where P is the  total  momentum of the fragment 9, and MD = Mn + M is its mass. 
For  simplicitly, the masses of n  and  p  have  been  taken to be the same,  namely M, so 
that their total  mass is MD = 2M and their  reduced  mass is ,LL = (1/2)M. The  kinetic 
energy  T is the  same as that of a point mass MD whose  velocity is that of the  center 
of mass of fragment 9. Thus,  the following equation can be written: 

Q 

P' 

P -  D 8' 
P P 

P 

1 dE 1 d -  T 8 = , M D ( x ~ = z M D ( z r o - ~  '"> 2 

dt 2 

The form (eq. (150)) gives the transformation of the kinetic  energy  from a reference 
frame moving with velocity (dFddt), in which particle n is at  rest,  to the, reference 
frame of the  fixed core. The term 

is the  kinetic  energy of the point mass  MD in the moving reference  frame. The quan- 
tities Fn = Mn(dFddt) and p = p(dF/dt) a r e  the  momentum of particle n  in  the  frame 
of the fixed core and in the center-of-mass  system of fragment 9, respectively.  The 
kinetic  energy  operator  becomes 
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The  momentum operators  have  the  coordinate  representations Fn - -ifi vr and 
p -ili Vr. Finally, 0 

r 1 

where L' = Fo x cn. The terms  arising  from  T  in  the coupled equations  (eqs. (149)) 
are much less complicated  than  the  corresponding  contribution  in  the coupled equations 
given by HA+@ 

Consider now a selected set of open cy and /3 channels, for  which an  appropriate 
projector is IIM, of the kind given in  the  section MULTICHANNEL PROJECTION 
OPERATORS, for  example. Then, an open-channel subspace 9 of the class that has 
been used  here  can  be  resolved into  the direct sum of sM, the  projective  space of IIM, 
and of $jK, the  largest orthogonal  subspace  in 9. Thus, 

P 

With the  same  procedure as was used  in  reference 7 for the case of a  selected  set of 
inelastic  channels,  the  generalized  potential  for  the  projection rIM* can  be  derived. 
The steps involved are exactly  analogous  to  those which lead  from equation (40) to 
equation (45) in reference 7. In the  present case, start with equation (151) and replace 
rII by rIM in the subsequent  equations of reference 7. In terms of the  generalized 
potential,  the  components of IIM9 satisfy a set of coupled equations.  Appropriate  energy 
averaging of the  transition  amplitude  leads  to  an  expression  for  the  generalized  optical 
potential  that describes  the  direct  reaction in  the  selected  channels. Again, the  pro- 
cedure  directly  parallels  the  derivation  in  reference 7 for the case of inelastic  scattering. 

The  optical  model  Hamiltonian  can  be  written 

The  compound-nucleus term  uCN  gives  the  energy-averaged  resonance contribution  to 
the  transition  amplitude.  The  scattering  eigenstate e(+) of hM yields  the  energy- 
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averaged  transition  amplitudes in the selected  channels.  Necessary  conditions are 

IIMhM = h M II M = ~ M  

nM is a projector of the type 1 1 ~ + ~ ~ ,  coupled equations for  nA+Bfo(+) follow  in the 
same way as equation (149), except  that hM appears  in  place of H, and IIA,,  now 
refers to a selected set of open a! and /3 channels. If a phenomenological  optical  poten- 
tial is associated with the exact potential  given by hM, the condition (eq. (153)) can  be 
taken  to hold for  the solution e(+) given by the  empirical  generalized potential,  that is, 
- = e(+). Here, nM is the  projector obtained by the  replacement of the exact 
internal  states  in IIM by the  approximate  states given by the  model.  The  appropriate 
llM is employed  to  obtain a set of coupled equations  like equation (149) for  the compo- 
nents of a(+). The  phenomenological  potential consists of the  various coefficient  func- 
tions  that  enter  in  the coupled equations; it  corresponds  to  the  matrix  elements of the 
associated hM taken  between  the  internal states of the  channels  included  in IIM. The 
potential is determined by adjustment  to  produce  the  optimum fit to  the  experimental 
data. 

=Me 
- 

Lewis  Research  Center, 
National Aeronautics  and  Space  Administration, 

Cleveland, Ohio, March 19,  1968, 
129-02-07-07-22. 
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APPENDIX - SYMBOLS 

A 

A0 

dad- 1 

a 

a 
-c 

- a 
- 
aD 

aK 
- 

B 

B 

BO 
- 
B 

b 

bm,j v 
b’ 
C 

C 

‘mm, 
c 

cO 

D 

selected set of cy channels 

set of all open cy channels 

transition  amplitude  for’  channel am 

transition  amplitude  for  channel pn 

nucleus  consisting of particle p bound to  the  core 

heavy core  nucleus 

matrix  equal  to lM - bbt 

value of Fo 
matrix equal  to la - btb 

diagonalized form of matrix Z 

eigenvalue of matrix Z 

selected set of p channels 

matrix  equal  to lM - Av -’ A t  

set of all open p channels 

matrix equal to lN - v - l  A? A 

matrix whose  elements are b 

equal to (g Iw. ) = b 

value of Iz 

m, K 

jm J V  m , ~  

selected  set of j values 

matrix  equal  to 1 B-‘ 

matrix  element of C 

matrix equal to 1 (VET)- 
‘0 

matrix  element of C 
equal to  z.(g. 18. ,) 

‘0 

1 1m  Jm 

equal to [(g lg)]1’2 

subscript  designating  nucleus 9 

bound system of particles n  and  p 
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d 
- 
d 

dv 

dT1 
E 

F 

F' 

F 
N 

Fm' 

'm 

Fm 
- 

G 

G 
N 

Gn 

Gn 
- 

H 
2F 

lM - hh' 
lN - h 'h  

dr-o dr l  

d;,, dFl d z  

dpl dFl d F  

total  energy 

vector  in ii space 

vector  in Fo space 

vector  in ro space 

vector  in To space 

vector  in Fo space 

vector  in To space 

vector  in ro space 

vector  in fi space 

vector  in ro space 

vector  in ro space 

abbreviated  rotation  for  gjm(Fl) 

-c 

-c 

-c 

effective  Hamiltonian 

total  Hamiltonian of system 

rn 
direct sum of channel subspaces Gam, m c A  

direct  sum of all open channel subspaces $jam 

direct sum of channel subspaces 6 n C B 

direct  sum of all open channel subspaces $j Pn 
direct  sum of channel subspaces gjp,n, n c B 

space  spanned by all subspaces 6 n c B 

direct  sum of channel subspaces .acj, j c C 

space  spanned by GA and GB, combined 

pn' 

Pn, 
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largest  subspace of SBt that is orthogonal to sA 
largest  subspace of SA that is orthogonal to sB' 
space spanned by SA and sg combined 

largest  subspace of that is orthogonal to sA 
largest  subspace of sA that is orthogonal to 6~ 

space spanned by SA and 6c combined 

largest  subspace of GC that is orthogonal to *A 

largest  subspace of eA that is orthogonal to sC 
the  largest  subspace of 9 that is orthogonal  to sM 
the  projective  space of IIM 

abbreviated notation for sam 
abbreviated notation for 

channel subspace  spanned by all states  representable by p(Fo)@m(r 5 ) 

channel subspace  spanned by all states representable by s(@@~(;~, r) 
abbreviated notation for 6 

Pn 
channel subspace  spanned by all states  representable by 

channel subspace  spanned by all states representable by t(Fo)Xi(? )qj (z) 
subspace  spanned by all vectors  representable by  p(F0)(q+), 

channel subspace  spanned by all states  representable by c(R, r)+.(T) 

abbreviated  notation  for gj 

space  spanned by sa and combined 

largest  subspace of 6 that is orthogonal  to 6, 

largest  subspace of 6, that is orthogonal to 6 

space  spanned by 6, and 5 combined 

largest  subspace of 6 that is orthogonal to 6, 

largest  subspace of 6, that is orthogonal to 6 

space spanned by 6,' and 6 combined 

largest  subspace of 6,' that is orthogonal  to 6 
P 

largest  subspace of 6 that is orthogonal to 6,' 

" 

" 

1 

cj 

P 
P 

P 
P' 

P' 

P' 
P 

P 
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J 

1 

J(n,  nf) 

space spanned by 6, and 6, combined 

largest  subspace of 6, that is orthogonal  to 6, 

-largest  subspace of 6, that is orthogonal  to 6, 

abbreviated notation for hmn(Fo) 

d~lfgj,*(~lf)Xi(~o - . i f )  

matrix whose  elements are hmn(Fo) 

diagonalized form of matrix h(Fo) 

an eigenvalue of h 

the  exact  optical  model  Hamiltonian 

direct  reaction  term of optical  model  Hamiltonian hM 

111: 
I 

(E, @ I @ ,  X*) 

abbreviated notation for I1(R, R') 

specifies state of nucleus 9 

"c 

JlJlt 

JltJl 
abbreviated notation for Jl(Fo, Tof; m,  n) 

matrix of array Jl(mn) 

a r ray  of operators  represented in Fo space by Jl(rO,ro; m, n) " 

Jacobian  determinant 

Jacobian  determinant 

specifies state of nucleus sf-1 

K l K l t  

Kl% 
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*a 

km 

-c 

L 
4 

L 
- 
L 

L' 

L' 

2 ( a  

M 

M 

a 
MD 

Mn 

MP 

M0 

(Fo, @I /E, x+), channel transformation function based on natural 
coordinates in both channels 

wave vector of incident  plane wave in  channel a0 

wave number for  relative motion of free fragments in channel am 

r' 0 X S n  

( 5  - K ) - l  

(lR - E)-1 

('r - Kt)-' 

1 a- l  
r O  

array of operators in ro space  that  comprises  L' 

an array of operators  in (ro, r 1) space 

- 
" 

value of Mn and M when they are equal P 
number of channels  in  the  selected set A of channels 

N'M 

mass of nucleus  D 

mass of particle n 

mass of particle p 

\ 

number of open Q! channels is Mo + 1 
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- 1/2 
(1 - A-2) 

m specifies state of nucleus Z 

n - 6 )  [1 - (1 /64) IZ(~) l2]  
- 1/2 

N number of channels  in  selected set B of p channels 

NO number of open p channels is + 1 

N 

N' number of j values  in set C 

NK 

n  specifies pair (i, j )  

n  incident particle  in pickup reaction 

0 

u " 1 
'r0 

Ommt 
ann, matrix  elements of 0 

'n 

ps 

BM 

matrix  elements of 0 

P projection  operator that selects all open  channels 

momentum of particle n  in frame of fixed  core 

total  momentum of fragment 9 in frame of fixed  core 
- 
B open channel subspace 

subspace of B corresponding  to  Hilbert  space of the model  problem 

P particle bound to  core d-1 in  nucleus d 
P momentum of particle n  in  center-of-mass  system of fragment 9 
-c 

Q 1 - P  

QS 'M - nS 

QS counterpart of Qs in  model  problem 
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closed channel subspace,  compliment of B in  total  Hilbert space 

center-of-mass  position  vector of 9 

unit vector  in  direction of 

idempotent  part of ll with property R,Q = u@ 
a+P 

idempotent  part of II with property RBQ = zqq 
. cY+p 

idempotent  part of with property Ea!@ = F@ 

idempotent part of ITa!+B, with property Ra,Q = Gxq 

idempotent  part of lIa,+B with property R,,f = F @ 

idempotent  part of IIa!,+P with property RPQ = G x ~  

idempotent  part of lla!+c with property Re,+ = Ff @ 

idempotent part of with property RcQ = TQ 

effective radius of nucles d 

idempotent part of IIA+B, with property RAQ = Z F m ~ m  

idempotent  part of llA+B, with property RBfP = CGn(xQ), 

Iv 

Iv N 

N N 

idempotent  part of I I A + ~  with property EA* = "FmGm 
idempotent  part of IIA+g with property %-Q = E c n ( ~ + ) n  

idempotent  part of with property RA'@ = ZFmf@m 

idempotent  part of with property RCQ = ET.+. 
J J  

effective radius of nucleus 

ro - Fl 
position vector of particle 

unit vector  in  direction of 

position vector of particle 

-c 

' 9  

n 
A 

r O  

P 

position vectors of particles  in  core  nucleus I - 1  

state of motion for  mass  centers of a! fragments  in  terms of coordinate z1 
a vector  in (Fo9 Fl) space 

sum of center-of-mass kinetic energies of a! fragments 

sum of center-of-mass  kinetic  energies of /3 fragments 

vector  in (Fo9 Fl) space 
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U 

state of motion  for  mass  centers of p fragments in terms of coordinate c2 
unitary  matrix 

('0, Cpm I *) 
vector in Fo space 

eigenfunction of K 

compound-nucleus  contribution  to  optical  model  Hamiltonian hM 

('9 (x+), I *) 
iteraction between (Y fragments 

vector  in E space 

eigenfunction of K 
b o ' ,  rl', +j I *) 
( 1 / C 0 M ~ )  

" 

complete  orthonormal  set  for  functions of r l  

an  orthonormal  set  constructed  from the set gjm, m C A 

a complete  orthonormal set whose first M members  are w-(; ) 

complete  orthonormal set for functions of Fo 

'b @ 

-c 

JV 1 

m ( m  - n p b  

MA(1 - np)uA@ 

6, I on)  

Ya 

Yan 

Fan 

YA 

n 
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specifies channel of a! type 

designates  particles of certain kind of channel 

specifies  channel of p type 

di?l*gjm*(Fl')~n(ro, To - Fll) 

normalized  eigenvector of J(m, m*) and  z(n,  n*) 

normalized  eigenvector of I and 

vector  in (R, r) space 

exp(-iK,;., T/2)xi(T) 

unitary  matrix  that  diagonalizes v(ro) 

scattering  eigenstate of generalized  optical  potential hM 

scattering  eigenstate of phenomenological  potential  associated with hM 

index  that  specifies pair (j, i7) 

constant 

wave number  for  relative  motion of free fragments  in channel pn 

- +  

a 
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% 
% 
- 

x 

- 
V 

eigenvalue of K and E 
reduced  mass of n  and  p 

matrix  elements of p(ro) 
A 

A 

matrix whose elements are v,,(ro) 

diagonalized form of matrix v(Go) 

index which can take values 1, 2, . . . , M 

index  whose values are integers  greater  than  or equal to (M + 1) 

represents set of coordinates F& . . . rA 

projection  operator onto GA 

projection  operator onto $3A~ 

projection  operator onto % 
projection  operator onto %, 
projection  operator onto % 
projection  operator onto %o 

projection  operator onto 

projection  operator onto EjA+B' 

projector onto %l 
proj  ector onto 8ApB , 
projector onto EjA+~ 

projector onto % 
projector SAPg 
projector onto 

projector onto % PA 
projector o~.to EjApc 

projection  operator onto % 

-L 

PA 

PA 
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projection  operator  for a selected set of open channels 

counterpart of ItM in  model  problem 

projector onto largest  subspace of t9 that is orthogonal to SA0 

projector onto largest  subspace of 9 that is orthogonal to %o 

alternative  projection  operator  to IIM 

counterpart of Us in  model  problem 

abbreviated  notation for na 
projection  operator  on sCYm 
projection  operator onto ea,m 
abbreviated  notation  for ll 

projection  operator onto 6 

projection  operator onto SJ 

abbreviated  notation  for Il 

projector onto 6 

projector onto 

projector onto 6 

projector onto 5 

projector onto gj5,+Pl 

projector onto 5 

projector onto SJ 

projector onto 

projector onto 6 
a'PP 

projector onto 6 PPa' 
projector onto sa+, 
projector onto 6 

QPC 

projector onto 6 
CP@ 

coordinate  for CY channels,  in  addition  to Fl 
coordinate  for P channels,  in  addition  to r 

common coordinate  for  both CY and P channels 

Pn 

Pn 

P'n 

cj 

cj 

PPO 

aPP 

P'Pa 

QPP' 

state of motion  for  mass  centers of CY fragments 



state of motion for  mass  centers of p fragments 

complete  orthonormal set for  functions of 

wave  function for  mth excited state of nucleus d 
abbreviated notation for  @m(;l, 3 
N(@ - g*) 

N(w1* - COG) 

wj#j - Emb,,  j$m 

wave  function for ith excited state of particle 9 

abbreviated notation for xi( r ) - 
X i  +j 

total  scattering state 

wave  function for jth excited state of nucleus d-1 

abbreviated  notation for x. ( T )  
J 

NnCntUn'n[ (X*),' - xmhmn' $ 1  m 

n(x* - h$) 

m[ $ - (1/W *x*] 

(X*)n - Cmhmn$m 

Mathematical  notations: 

* 
t 
C 

Planck's  constant divided by 2r 

Kronecker delta 

gradient  operator with respect  to  coordinate r' 
scalar product  over a complete  set of variables  for  system 

scalar  product  over a set of variables  that is not a complete  set  for  system 

unit vector  in r' space 

"dimensional  unit matrix 

direct sum 

complex conjugate 
Hermitian  adjoint 

is contained in 
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intersection 

the set X 
P 
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